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Abstract. The rate of the latent heat transfer at first-order phase transitions is calculated.
A dynamic criterion to determine the dominating process in kinetics of phase transitions is
obtained. It is shown that in ferroelectric perovskites of the ABO3-type the relaxation of the
order parameter governs the phase transition kinetics. The electric field dynamics of interphase
boundaries is studied as an example of the applicability of the relaxation kinetics and the front
velocity appears to be of the threshold field type.

The kinetics of first-order phase transitions is an active branch of research which deals
with the dynamics of metastable and unstable phases. These phase transitions in various
systems are often accompanied by pretransitional or precursor phenomena, when drastic
changes of system properties occur displaying substantial changes in the behaviour of
observable quantities. The origin of these phenomena is the appearance of nuclei of
competing thermodynamic phases inside a host phase [1]. In recent years interest has grown
considerably in studying the nature of metastable states and first-order phase transitions.
Relaxation of a metastable system to a thermodynamically stable state may take place
due to motion of a phase transition front. In the solid diffusionless transformations the
growth may be slow enough for the observation by polarization microscope technique. In
particular, in ferroelectrics sharp interphase boundaries can be observed [2–6, 9–14]. Usually
the interphase dynamics are governed entirely by the time evolution of the order parameter
[15–22] and the temperature can be considered to be a constant. Thus the heat is assumed
to be removed rapidly enough so that no temperature change occurs as the latent heat of
the phase transition appears at the interphase boundary. However the moving interface can
act as a heat source giving rise to a jump in the thermal gradient. The heat generated
during the interphase boundary motion can accelerate the interface which, in turn, increases
the heat production rate. If one deals with substances which conduct heat very well, the
temperature may be treated as a constant and so no kinetic equation additional to that for
the order parameter is necessary. For materials which do not conduct heat so well, we may
need a second equation to determine the temperature distribution. Therefore the interphase
boundary motion can be determined by the rate of heat transfer in the system. In a recent
review [14] our theory of the kink motion of the interphase boundary [16, 18, 19] has been
examined. The necessity to consider processes of dissipation of energy released or absorbed
during the time of transition has been pointed out in [14].

This paper concerns the effect of the dynamics of a phase transition, specifically the
dynamics of a propagating interface on the degree of order in a phase. We also consider
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the inversional problem: how the order in a phase can affect the dynamics of an associated
transition and in particular on its growth rate. We obtain a criterion of necessity to consider
the heat transfer effect on the interphase boundary propagation. Thus, we justify the
conditions when only the Ginzburg–Landau equation may be used to study the kinetics of
phase transformations. We show here that at first-order phase transitions in ferroelectric
semiconductors the thermal conductivity is not a controlling process and the interface
movement is determined by the kinetics of the phase transition. As an example the electric
field dynamics of interphase boundaries are considered for the case when they are governed
by the polarization evolution.

The electric-field driven kinetics of ferroelectric interphase boundaries have not been
studied up to now. We estimate conditions of the applicability of the mean-field Landau
theory for the study of the ferroelectric–paraelectric phase transition in low electric fields.
We discuss how the volume strain-induced elastic energy contribution leads to existence
of the threshold electric field in the phase transition investigated. We start our analysis
with the discussion of the conditions when the propagation rate of the phase transition
front is determined only by a non-activated process. For this purpose we compare the
velocities of interphase boundary conditioned by heat transfer and by relaxation kinetics.
The velocity of the interface caused by the latent heat transfer may be found from the
following considerations. The heat flowing across the interphase boundary isk∇T S1t ,
wherek is the thermal conductivity coefficient,∇T is the temperature gradient,S is the
square of the area of the interface and1t = 1R/vT , where1R is the change of size of the
new phase during the interface motion with a velocityvT . This heat per unit mass is the
latent heatL = k∇T 1V/1mvT , where1m/1V is the density,ρ. Thus, the propagation
rate of the phase transition front due to the latent heat transport is given by

vT = k∇T

ρL
. (1)

The velocity of the interphase boundary movement caused by the kinetic processv was
calculated in [16]. It has been derived from the time-dependent Ginzburg–Landau equation
(GL) with 0, the Landau–Khalatnikov kinetic coefficient, independent of temperature. The
free energyF may be written in the Landau-type form:

F(P )

∫ (
D(∇P)2 + 1

2
A(T )P 2 − 1

4
BP 4 + 1

6
CP 6 + fcoupl{P, εαβ} + felast {εαβ}

)
dV (2)

where V is the volume,D is the inhomogeneity coefficient,B and C are constants,
A = A′(T − T0), T0 is the stability limit of the paraelectric phase,A′ is a constant andεαβ

are the strain tensor components. As was discussed in [7, 8] thefcoupl is the additional free
energy describing the coupling of polarization and strain. Thisfcoupl contains terms which
are proportional toP 2 and only affect theT0 value. felast is the elastic free energy that does
not influence the relaxation kinetics of the phase transformation because it is polarization-
independent and does not contribute to the GL equation. We will use experimental values
for Tc − T0 that already account for the coupling contributions and which renormalize the
coefficientA from equation (2). HereTc is the Curie temperature.

For a moving phase transition front the GL equation holds at the interphase boundary
provided the interphase boundary width,1, is considerably greater than the interatomic
distances. This equation cannot be solved exactly in the three-dimensional case but if the
size,R, of clusters of the new phase inside the old one is much larger than the width of the
interphase boundary1, R � 1, the exact solution can be obtained [16]. Thus, the theory
works atR � 1 � d, whered is the lattice parameter.
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Now the relation between a critical size,Rc, of the product transformed region and
the growth rate,v, can be established. The profile for the front may be found from the
exact solution of the GL equation in the equilibrium limit. The spatial dependence of the
polarizationP (r) is approximately given by [16]:

P = PF (|r| 6 R)

P = (PF /
√

2)

[
1 − tanh

(
r − R

21

)]1/2

(R 6 r 6 R + 1)

P = 0 (|r| > R + 1)

(3)

whereP 2
F = (B/2C)[1 + (1 − 4AC/B2)]. Equation (3) gives a radial symmetric cluster

of the nucleating phase embedded in a spatially uniform metastable background. Using (3)
and integrating in (2) forR � 1 one obtains

F = −4πR3f (PF )

3
+ πR2DP 2

F

1
+ 4πR3Q

3
(4)

whereQ is the elastic energy density andf (PF ) is the density of the free energy given by
the GL functional.

From (4) it is seen that the surface tensionσ = DP 2
F /41. The last term in equation

(4) is the result of integration offelast (εαβ) over volume in the assumption thatεαβ are
independent ofr.

According to the classical theory of nucleation, the new phase nucleus whose radius
corresponds to the maximum of the free energy is the critical nucleusRc. Let us suppose
that Q � f (PF ). Then neglecting the third term in equation (4) after maximization we
derive

Rc = 6D

1|4A − BP 2
F | . (5)

Combining the interface velocity [18] and (5) we obtain

v = 40D

Rc

. (6)

The propagation of the interphase boundary is determined by the kinetics of the order
parameter, ifvT � v. Comparing the velocity of the interphase boundary from [18] and
(6) and supposing that∇T ≈ (1T/Rc), where(1T ) is the supercooling or superheating,
one obtains that this criterion is fulfilled for

γ = k1T

4ρL0D
� 1. (7)

This condition does not depend on the critical sizeRc. Let us check the criterion
for ferroelectric perovskite semiconductors for which many measurements of interphase
boundary dynamics have been carried out [2–6, 9–14]. We used the following experimental
values, which are typical for ABO3 ferroelectric perovskites:L = 8.96 × 106 erg g−1

(50 cal mol−1) [23], k = 11 × 10−3 cal cm−1 s−1 K−1 [24], ρ = 5.9 g cm−3 [24],
0 = 1.61 × 1010 Hz [12], D = 3.3 × 10−16 cm2 [18], 1T = 0.25 K [12], A′ =
9.09 × 10−6 K−1 [18], B = 1.27 × 10−12 esu [25], C = 5.73 × 10−23 esu [25] and
Tc − T0 = 43 K [26]. The required ratio is then about 100. Thus, the heat transfer process
is more rapid than the kinetics of the order parameter relaxation. For this reason, the
latter process determines the interface propagation in the above ferroelectric semiconductors.
Consequently, the release of the latent heat of the phase transition does not play an important
role in the dynamics of interphase boundaries in the perovskites under consideration.
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However, ifγ ≈ 1, the two processes must be taken into account. The theory of the kink-
type motion for interphase boundaries [16, 18, 19] is suitable for perovskite ferroelectric
semiconductors because the criterion (7) is fulfilled. This is due to the comparatively high
thermal conductivity and comparatively low latent heat.

As was mentioned above the velocity of relaxation growth may be obtained in a
compact form of equation (6) if the conditionQ � f (PF ) is fulfilled. The density of the
homogeneous strain energy for typical perovskite ferroelectric–paraelectric phase transition
(cubic–tetragonal structure transformation) is given by

Q = 0.5C0
11

(
ε2
xx + ε2

yy + ε2
zz

) + C0
12

(
εxxεyy + εyyεzz + εzzεxx

)
+ 0.5C0

44

(
ε2
xy + ε2

xz + ε2
yz

)
(8)

where C0
11, C0

12 and C0
44 are the elastic constants of the paraelectric phase. Assuming

only uniform deformation we may neglect the non-uniform inhomogeneous contribution to
the elastic energy. At the same time we may assume thatεxy ∼ εxz ∼ εyz ∼ 0. This is
confirmed, for example, by the first-principles calculations for BaTiO3 (see for example [7]).
As follows from [7] the values ofεxx , εyy andεzz are of the same order, thus we use their
equality in estimations. Under these conditions and using the definition ofεαα(α = x, y, z)

and the Clausius–Clapeyron equation we obtain

εαα = dTc

dp

L

3�Tc

. (9)

Herep is pressure, and� is a primitive cell volume. The density of the elastic energy is
then given by

Q = 1

2

(
dTc

dp

)2

B

(
L

�Tc

)2

(10)

whereB is the bulk modulus.
Let us analyse the situation for the ferroelectric phase transition in a low electric field

when the approximation of the linear response may be used. In this case the relaxation
kinetics of polarization also dominate the thermal conduction-driven mechanism for motion
of the phase transition front. For instance in [27] the front velocity is 10−3 cm s−1 even at
an electric field ofE = 300 V cm−1. Thus, the criterion (7) is fulfilled. The appearance of
a nucleus of the new phase results in a free energy change which is given by

−4πR3EPF

3
+ 4πR3Q

3
+ 4πR2σ

in the linear field approximation, whereσ includes both the electric field induced and
the elastic terms. The first term was introduced in [28]. The second term presents the
volume strain energy contribution [29]. Comparing the densitiesEPF andQ in the above
mentioned way one may estimate when it is possible to neglectQ. In the ferroelectric
semiconductors under investigation the polarization charge at the interphase boundary can
be easily compensated so that the depolarization energy is much smaller in comparison with
the elastic energy [3] and may be neglected in our consideration. Then after maximization
we derive

Rc = 2σ

PF (E − Ec)

whereEc = Q/PF . The latter formula reflects the fact that at first-order phase transitions the
volume and shape change associated with the transition cause a strain energy contribution
to the free energy supressing the nucleation process [30]. Thus, we arrived at an electrical
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modification of the known Laplace formula [31] in which(PF E − Q) yields the difference
between the pressures in the two phases. To find the velocity of the interface motion in the
presence ofE − Ec in the linear field approximation, we should compare the power lost
by the system due to damping and the power input, i.e. the work per time unit done by
the electric force. Using the dynamic form of the front profile (3) [16], calculating∂F/∂t ,
integrating and equating the powers we obtain

v = 20DPF (E − Ec)

σ
. (11)

Equation (11) implies that the interphase boundary would move if the electric field is larger
than the threshold electric fieldEc. This result is known from measurements of velocities
of the electric field-induced motion of ferroelectric interphase boundaries in SbSI [32] and
domain walls in BaTiO3 [33], Rochelle salt [34] and NaNO2 [35]. Observations in [32]
indicated the existence of some critical value of the electric field below which the boundary
did not react to the presence of the electric field. The boundary began to move in fields
somewhat larger than the critical value. In [33–35],v ∝ (E − Ec).

The present study of criterion for separating two mechanisms for the front motion—the
latent heat transfer and the relaxation of the order parameter—provides an encouraging test
of the accuracy of the theory of the kink-type motion for interphase boundaries [16, 18, 19]
for perovskite ferroelectrics. Fulfilling the criterion obtained emphasizes the dominating
process of the order-parameter relaxation in the dynamics of perovskite phase transition
fronts due to relatively high thermal conductivity of ABO3-type perovskites. It is anticipated
that it will be very important to study the strain contributions in kinetics of ferroelectric–
paraelectric phase transitions in perovskites, which should clarify the role of stress and stress
anisotropy in this process. The study of electrical field response in phase transition kinetics
demonstrates the method of application of the proposed approach.
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